Calculadora de Derivadas • ¡Con pasos!
f(x)
$k$
$kx$
f’(x)
$0$
$k$
f(x)
$f(x)^n$
$f(x)·g(x)$
$f(x)+g(x)$
$a^{f(x)}$
$log_n(f(x))$
f’(x)
$n·f(x)^{n-1}·f'(x)$
$f'(x)·g(x)+f(x)·g'(x)$
$f'(x)+g'(x)$
$a^{f(x)}·ln(a)·f'(x)$
${\displaystyle\frac{f'(x)}{f(x)·ln(n)}=\frac{f'(x)}{f(x)}·log_a(e)}$
f(x)
$f(x)·g(x)·h(x)$
$f(x)^{g(x)}$
f’(x)
$f'(x)·g(x)·h(x)+f(x)·g'(x)·h(x)+f(x)·g(x)·h'(x)$
$g(x)·f(x)^{g(x)-1}·f'(x)+f(x)^{g(x)}·ln(f(x))·g'(x)$
${\displaystyle\frac{1}{f(x)}=f(x)^{-1}}$
$^n√f(x)^m=f(x)^{\frac{m}{n}}$
$ln(e)=1$
f(x)
$sen(f(x))$
$cos(f(x))$
$tg(f(x))$
$arcsen(f(x))$
$arccos(f(x))$
$arctg(f(x))$
f’(x)
$cos(f(x))·f'(x)$
$-sen(f(x))·f'(x)$
${\displaystyle f'(x)·(1+tg^2(f(x)))=\frac{f'(x)}{cos^2(f(x))}}$
${\displaystyle\frac{f'(x)}{√(1-f(x)^2)}}$
${\displaystyle-\frac{f'(x)}{√(1-f(x)^2)}}$
${\displaystyle\frac{f'(x)}{1-f(x)^2}}$